Improving molecular cancer class discovery through sparse non-negative matrix factorization
نویسندگان
چکیده
MOTIVATION Identifying different cancer classes or subclasses with similar morphological appearances presents a challenging problem and has important implication in cancer diagnosis and treatment. Clustering based on gene-expression data has been shown to be a powerful method in cancer class discovery. Non-negative matrix factorization is one such method and was shown to be advantageous over other clustering techniques, such as hierarchical clustering or self-organizing maps. In this paper, we investigate the benefit of explicitly enforcing sparseness in the factorization process. RESULTS We report an improved unsupervised method for cancer classification by the use of gene-expression profile via sparse non-negative matrix factorization. We demonstrate the improvement by direct comparison with classic non-negative matrix factorization on the three well-studied datasets. In addition, we illustrate how to identify a small subset of co-expressed genes that may be directly involved in cancer.
منابع مشابه
Voice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملNon-negative Matrix Factorization with Applications to Handwritten Digit Recognition
In the last decade, non-negative matrix factorization (NMF) has become a widely used method for solving problems in data mining and pattern recognition. The NMF in its present state can be traced back to the work of Paatero and Tapper in 1994 at the University of Helsinki under the name, “positive matrix factorization” [1]. This technique was popularized by Lee and Seung in 1999 under its curre...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملCancer Class Discovery Using Non-negative Matrix Factorization Based on Alternating Non-negativity-Constrained Least Squares
Many bioinformatics problems deal with chemical concentrations that should be non-negative. Non-negative matrix factorization (NMF) is an approach to take advantage of non-negativity in data. We have recently developed sparse NMF algorithms via alternating nonnegativity-constrained least squares in order to obtain sparser basis vectors or sparser mixing coefficients for each sample, which lead ...
متن کاملSparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares
Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Non-negative matrix factorization (NMF) is a useful technique in approximating these high dimensional data. Sparse NMFs are also useful when we need to control the degree of sparseness in non-negative basis vectors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 21 21 شماره
صفحات -
تاریخ انتشار 2005